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ON THE THEORY OF IGNORABLE DISPLACEMENTS FOR
GENERALIZED POINCARE-CHETAEV EQUATIONS

FAM GUEN

Ignorable displacements for generalized Poincaré—Chetaev equations /5/ valid for
holonomic and nonholonomic systems are defined, and a similar definition is given
for the equations of motion of nonholonomic systems in Poincaré—Chetaev variables
/6/. It is shown that this definition comprises, as particular cases, the definit-
ions in /1,3.:4/, as well as some other definitions of ignorable coordinates in /7—
3/ and others. Routh equations of reduced order are presented.

The general theory of ignorable displacements, first introduced in analytic mechanics by
Chetaev /1/, was developed for holonomic and nonholonomic systems, respectively, in /2/ and

/3,4/.

1. Ignorable displacements and the integral for generalized Poincaré—
Chetaev equations. Consider a mechanical system of N material points, defined at every
instant of time ! by variables xy, %y, ..., ¥, which on real displacements are subjected to
n — | linear equations of constraints

n
N e igla,-ix{+a,j=0 (j=l+1,...,n) (L.1)
and on possible displacements to n — ! relations

0; = élaﬁﬁxi=0 (j=1+1,...,n) (1.2}

where ! is the number of the system degrees of freedom and a4y, ¢; are known functions of
variables ¢t and ;. Nonhomonomic constraints are possible among those considered here, When
they are present we assume the last &k — ! constraints to be holonomic (I<<k<n).

As shown in /5/, it is then possible to construct a system of displacement operators X,
X .., X:; that satisfy the relations

k

4
(Xsth)—"—-ﬂElCaaBXB'{’ Z} CJGVXV (103)

V=it

(s=0,1,...,I; a=1,...,D

and obtain the equations of motion in the form of generalized Poincaré— Chetaev equations
valid for both, the holonomic (when k =1) and nonholonomic systems (when k>0

%—%-X“T+U)~2(cm5 n Eﬂscsaﬁ)%— (1.4)
B=1 s=1
2 (Coav +£ 'rlscsav> (Z—Z:—) =0 (a==1,...,0)

Vazld] §e=]

where 7 is the system kinetic energy (with allowance for imposed constraints), 7° is the
kinetic energy of the respective "holonomic system" without allowance for nonholonomic con-
straints, U is the force function, and Cup and (g, are generally functions of variables
t 2, X, .. ., X which are operators that correspond to the form of the left-hand sides of
nonholonomic constraint equations (1.1).
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To obtain some first integrals of Eqgs.(1.4) we use the following definition.

Definition 1. wWe call ignorable any displacement with operator X, that satisfies for
Egs. {1.4) the following conditions

1°. commutators (1.3) for X, are of the form
v
(Xo Xy) = %r ConXy (s=0,1,...,1) (1.5}
Vel 1

i.e. they can only be expressed in terms of operators that correspond to right-hand sides of
the nonholonomic constraint equations {(1.1).

2°. The equality
i 1
Xy (AU + Y (Cont Y 0Cow) (57 ) =0 (1.6)

Vel s=1

holds for the kinetic energy and the force function.
Then from the y-th of Egs.{1.4) we can obtain the cyclic (ignorable} integral

aT/omy = Py = const (1.7)

Definition 1 includes, as particular cases, Chetaev's definition of ignorable displace-
ment for holonomic systems, since for them all coefficients (4w are zero, and from (1.5},
(1.6) we have Chetaev's conditions and the definition given in /4/ for the same FEgs. (1.4},
since when operator X, is communtative with all operators X,, conditions (1.5}, (1.6) are
the same as those in /4/.

2. Ignorable displacements for equations of motion of nonholonomic systems
» 3 - . . . . .
in Poincaré— Chetaev variables. As in the case of equations of motion of nonholonomic
systems in Poincaré— Chetaev's variables /6/

i 3 !

%%_YR(TJrU)—Z<k0a5+>:nsksan>-5%— Z {kgm+2nsz€;”i}< Z;:)_:o (@=1,2,...,0) (2.1)
s=1 ‘

f=1 s=1 v=i+1

it is possible to formulate the following definition.

Definition 2. oOperator Y, is an operator of ignorable displacement for Egs.(2.1),
when the followings conditions are satisfied:

k

(Y, Y= D kpXe (s=0,1,...,0) {2.2)
A=l 3
i
Yol + 0+ Y (Kaw b Y i) () = ©
==l s=1

where Y. are operators of real displacements of nonhomonomic systems with constraints

1
‘1v=a§1Cvaqa+C'vo (v=1-+1,...,k) (2.3

For the respective holonomic system these operators are expressed in terms of displace-
ments operators X, in the foxzn
"a == Xu + 21 cvaXy (05::0;'1:“-;!) (2.4

v=l+1
1 &

(}'s: Ya) == 2} ksaBYB + E ksova
Be=1 el 41

(s=0,1,...,5 a=1,....,1)

k k k
ksaﬁ = Csaﬁ -+ v=21,+1 CvaCsvﬂ -+ u;m Cus (CWB -+ v__gl_ﬂ CW‘CIWF')

I3
ksqy == koav — 52 cvﬁksaf‘s -+ ivs {Cve) — Yo (Cvs)
0]
(s=01, .., La=1..., Lp=1.... kKEv=I+1..., kK
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where the coefficients C.p are taken from the cummutators
k
(X Xa)zglcmﬂxﬁ (s=0,1,...,k a==1,...,k)

T° is the kinetic energy of the respective holonomic system, and T its expression with (2.3)
taken into account, i.e. it is the kinetic energy of the nonholonomic system.
To each ignorable displacement corresponds in conformity with definition 2 the ignorable
integral
aT/omy = Py = const (2.5)

Definition 2 comprises, as a particular case, the definition given in /3/ for the equa-
tions of motion of nonholonomic systems in Poincaré—Chetaev variables with constraint multi-
pliers, according to which X, is an ignorable displacement when

Ko X)=0, (=0, 1,..., }), Xy (L) =0 (2.6)
e =0=1+1,..., &

where X, are displacement operators of the respective holonomic system, ¢y, are coefficients
in the nonholonomic constraint equations (2.3), and L°is the Lagrange function for the cor-~
responding holonomic system.

Indeed, the substitution of (2.6) into (2.4) yields

k
YoreXo }‘l_,HcWXv, Y, =X, (a=0,1,...,5; as=7)
[
k

oY) =(T o Xy=— X Xy(ew)Xy (s==0,1,...,D
v=al 41

Yo (L) ==X, (L) = i ‘%%[Xv(cvo)-i‘iﬂsxv ()]
=1

v=it1

The last two formulas show that the conditions are satisfied, since ki = —Xy (cw), kopv =
— Xy (ew). Hence when condition (2.6) is satisfied, Xy is also an ignorable displacement of
Egs. (2.1) (transformed to independent parameters), while existence of the ignorable integral
dI°/dm, = const for equations with multipliers implies the existence of an ignorable integral
for the transformed equations (2.1). The latter can be obtained directly, since

&

ar are aT°

—_——— ) E —_ (2.7)
an, o, veTh oy v

Using definition (2.2) it is also possible to prove the following.

a) The definition of ignorable coordinate in /7/ which yields the first integral for
equations with multipliers does not, generally, provide the integral for the transformed equa—
tions {2.1). To obtain the latter it is necessary and sufficient that the respective second
condition (2.2) is satisfied.

b) The definition of ignorable coordinate in /8/ reduces to the particular case of def~
inition (2.2), it yields first integrals simultaneously for equations with multipliers and
for the transformed equations (2.1).

Indeed, let the nonholonomic system in generalized coordinates be subjected to nonholow
nomic constraints

3
9, = Z Cyale (V=I41,...,n) (2.8)
=1

and the equations with multipliers be

d 3L° aLe Z 0 (2.9)

dt ag, T8, Bafyg = .
Yo e v=i41

d 8L° 8L°

???E’“?E“H%=O fa=1,.. Lv=I141,,...2)

Then the ignorable coordinate that satisfies conditions /7/
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k3

aL° ,
Tq;-::(), 2 p.vcw:() (2]
vl

,M
]

yields the first integral 0T%3q," = const. But formula (2.7) shows that without the assumption
that ¢y, =0, the integral aT/aqv‘ = gonst for the transformed equations, which in this case are
Voronets' equations, does not always follow from (2.10).

By virtue of (2.10) it is generally possible to obtain from (2.7)

n n
d aT doyy  87° n d ar°
dat ag, o at g Cvydr g
Iy =, (‘M v My
or
- a are S d oL P - aT"
d or ,
I e I 29 RACW (2.11)
wasf4-1 V=il ¥ v=I+1
where from (2.3)
) 5 - 9
I:
Y, =, Ys;—(}—is— v T
V=1
n
. a
(¥, Y)= kX Xy= 50—
Vel v
By = 00 k=Y () —Yoley) (s=1,.. ., Lv=1l414..., n)

moreovex

i 1

0L° are 3
ST+ 0) = 3q+2 oo+ a—qvf;qsy,,(cw)

mra s

which by virtue of the first of conditions (2.10) yields

n L3 !
ar°
I =) W
v=l-H1 vazl4-1 A
Substituting (2.11}) and (2.12) into the second of conditions (2.10), we obtain
7
d 9T
Z By =7 G — Yo T +U) = Z o qu [Y (e — Yy loy)] =0 (2.13)
ye={b1 v v={-}1 v 8==]

Formula {2.13) proves the second part of statement a).
If the ignorable coordinate g, satisfies for Egs.(2.9) the conditions /8/

oL8g, =0, ¢, =0 (v=1+41,....n

then it satisfies conditions (2.10), and it follows from (2.7) that 97/dg, = comst is the integral
of transformed equations (2.1), and from (2.3) and (2.13) that conditions (2.2) are also sat~
isfied. Statement b) is proved.
Another definition was given in /9—11/, namely that ¢, is an ignorable coordinate,
if
° a
aL 0, Cvoy =0

5, = ...5;’;__ (a=1,...,0; v=I+1,...,n)

As shown in /12/, this definition does not provide the first integral of equations with
multipliers. Neither can it yield an integral for the transformed equations (2.1), i.e. for
Voronets equations, since the corresponding equation for gy is then of the fomm

n

%%2 i Cyyp g T kU) Z qu X( 7q, -+ i Cusz_;vf”" Z cw%ﬁ) (2.14)

vty s==1 r={41 we=l41

which shows that it is possible to obtain the integral aTlaqf{ = const only when one more con-
dition that follows from (2.2), according to which the right-hand side of (2.14) must vanish,
is satisfied.
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The definition of an ignorable coordinate given in /13/ for Voronets'® equations isin the
form of conditions

5T/5qv~—0 CW—O
evlogy =0 (s=14,.., Ev=1+1,...,n

It can be shown that these conditions reduce to conditions (2.2).

Thus definition 2 comprizes, as particular cases, definitions given in /3,8,13/, while
for the definitions of such coordinates in /7,9,11/ to yield the first integral for the trans-
formed equations (2.1) (which in this case are the Voronets' equations) it is necessary to
satisfy some additional conditions derived from (2.2).

3. The Routh equations, Let us show that having ! -— m ignorable integrals (1.7)

aT/dny = By = const (y=m + 1,..., 1) (3.1)
it is possible to reduce the order of the system of Egs.({l.4). Indeed, since T is a positive
definite quadratic function of parameters m;,..., 17, it is possible to solve (3.1) for, letus
say, the last [ —m parameters

']Y = n')] {t! xls LS ] xﬂ’ nlv sy nma ﬁm*l’ ey Bt) (3.2)

y=m-+1,....0
Introducing, now, the Routh function of the form /1/
;
R=T4+U— 3 mb (3.3)
P=m+1

by virtue of (3.1) we have

SR— Zmaxa(T+U)+2 810 — imﬁﬁ, (3.4)

21 pe=metl

On the other hand, by substituting (3.2) into (3.3) we obtain function R dependent on I; zy M

s ey Nms ﬁmﬂy s e ﬁla and
:
-.Zmaxamwz bt Y, 0B (3.5)
p=mhl
It follows from (3.4) and (3.5) that
aT/oMg = R/, Xo (T + U) = Xq(R) (3.6)
= —0R/6By, Xy T+ =Xy(RB) (@=14,...,m
y=m-+1,..., 10

By virtue of (3.6) the first m generalized Poincaré— Chetaev equations (1.4) assume the form
" H "
d 4R , aR (3.7
g——xa(ﬁ)“;(cwﬁ'*‘z:ﬂscsa@)an— - ; % ﬁv(Cm+2mCm)—
1 &=l 8 1 (58

i (me—’rinacaw.— ! ag Cyav)(:i:)=0’ (a—_-.i,...,m)
#=1 y=m-+;

ve=i+1

which are theRouth equations of order 2m (m <Cl) which together with the kinetic equations

4

——-Xo<zo+2n,xm) Y, G Xe@) (=t (3.8)
Pusm-t-1

Bue]

constitute a closed system of n -+ m differential equations for the determination of n+m
variables z; and 7 as functions of time {. After this it is possible to determine 1, us~
ing Egs. (3.6).

In the case of holonomic systems Eqgs. (3.7) coincide with the Routh equations for the
Poincaré equations /1/, and when the operators of ignorable variables X, are commutative with
all other operators, they assume the form given in /4/.

Similary, when Egs.(2.1) have [ -— m ignorable integrals (3.1), the corresponding Routh
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equations of the reduced system are

e —Yal®) ,«Z (o + 2 nokiop) 2 By (Foay + Z N ) (5.9)

k = #= y=m+1 s=1
b 1
. ’ oR . .
V=l+l<kwv+s;n8kmv~v__z 66 k \((;T]' >—0 (a:l,...,m)

where the Routh function is defined by the relation (3.3).

4. Examples. 1°. a mechanical system consists of a table rotating about its vertical
axis with moment of inertia J on which moves a Chaplygin sledge /14/. We define the system
position by the following variables: the table angle of rotation ¢, rectangular coordinates
E,m of the sledge (cutter) of its contact point 4 with the table, and the sledge angle of
turn ¢ about point 4. Between these variables there is a single nonholonomic constraint

Ny ==Y sing —n cosg=0 (4.1}
Taking these variables as the Poincar€— Chetaev variables and the guantities
M=, MNg=£& 08¢ -9 sing N;=*¢ (4.2)

as the parameters of real displacements, we obtain the following system of nonholonomic dis-
placement operators:

3 . a 3 3 @ X a
Xy=gy, X: =30 Xzzcos(p-éz——}—sm@—aﬁ, Kg:a—‘g

The commutators of these operators are zero, except the following one:
(X5, X3) = —Xg X, = sin ¢3/8§ — cos ¢d/dn
where X, is the operator which corresponds to the left-hand side of the nonholonomic con-
straint equation (4.1). These operators satisfy the first of conditions (2.2). In addition
we have
T = Ygm (P2 + o — 2bmm, -+ 28/MyMs — 2857505 -+ Agilg?) (4.3)
T° =Yom {3 — 2anMy — A+ - - -, U =10
Ay =72+ a{cosg -+ ysing) + b (—Esing - ncos g}
Ay=Db-4tsing —mneosg, Az=J/m- 2+ E 4 9+
2a (§ cos @ + nsin ¢) -+ 2b (—Esing + ncos ), Ay =a |
Ecosg -+ msing
where m is the mass of the sledge with ¢,b its center of mass in the system of coordinates
A2y rigidly attached to it (axis 4z directed along the /sledge/ blade, and the 4y axis is
normal to it) and the ellipsis denotes terms that are independent of 1,. It will be seen
that only X, satisfies the second of conditions (2.2). The integral

8T/0ns = m{Aym; — Bgny -+ Agng) == B = const (4.4}

that corresponds tc this ignorable displacement, is the integral of the system moment of mom-—
entum about the vertical axis of rotation which can be directly obtained using the general
theorem of dynamics.

For the derivation of Routh's egquations we have from (4.4) the expression for n,, and
obtain the Routh function R =7 -+ U — fn;. These equations are of the form

A A A A t
(YE““ ! )m Lb_(Zb_Az)A .l‘f]' 2; aq,l N2 +(a"“—33—4>”]17la—‘ ¥ (B/m - By Ba) X (4.5)
. A (28 — Ay .
[(ﬁfm—}-AmH—Azm)——-a(P‘ -—2(&1\3—131/_\4)1,;1 —0, Lb—~(2b-—Az) = hh — 1S } e

2b — A, aA 1 [ 1 37y ]
(a2 B0 e 20— ) R v — e (B /- A 26— 81 {2 {2t — 20— 89 G5t -
B/m— A +3 (26— A) 0] Asf =0

which with equations . . . .
=1, & =n0c08¢ N =1nsing

constitute a closed system for the determination of g, & u,w. 1w, as functions of . After this
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we can determine ¢ using Egs. (4.4), in which V¥ =1,

20. A small wheel with a sharp rim, part of some instrument which pushes it on a hori-
zontal plane, while continuously holding the wheel rim in a vertical plane. The wheel rolls
without friction on the horizontal plane with the wheel center of mass on the vertical axis
passing through the contact point /15,16/.

We define the position of this system by the horizontal coordinates §,4q of  the wheel
center of mass (of the contact point) &, by the angle ¥ between the projection of the wheel
plane on the horizontal plane and the axis 0%, and by the angle of turn ¢ of the wheel about
its axis 0,0,. Between them there are nonholonomic constraints which stipulate that the wheel
rolls without friction and that the velocity of its center of mass remains all the time in
its plane:

=% ~Re'sing=0, =14 — R¢ cos¢y =0 {(4.6)

We assume &, n,9,% to be Poincaré-—Chetaev variables, and Mm=¢,n=10to be the real
displacement parameters. The respective displacement operators are then

é 2
X, =77 1= 3@ + Rsiny—5 65 +Rcosp5— 811 y Xgmr = =

These operators satisfy condition (1.5), since

(Xo, Xy) =0, (Xo, X5) =0, (X3, X;) = ~R cosPX; - RsingX,
where X,= 0/, X,= d/sn are operators which correspond to the left-hand of Egs. (4.6} of non-
holonomic constraints., We have, moreover,
T = 1am [(R® + k) m* + koPnp?], U =0
= em [ng® + 0l -+ 2R, (g sinp + n cos ) + ...
where k, k are the radii of inertia of the wheel about its diameter and its axis of rotation,
/respectively/, and the ellipsis denotes terms free of 14, 9. Hence condition (1.6) is sat~
isfied for X, and X,, and the respective ignorable integrals are
8T/on, = m (R® 4+ &%) m, = B, = const, 97/8n, = mhy’ng = P, = const
These integrals imply that parameters n,m remains always constant 4, = B/[m(R® + &, 1, = Bo/(mi?).
Their substitution into Egs. (3.9)
@ =1, § =1, ' = RsinPny, 1" = R cosym,
followed by integration, yields the sought laws of motion of the wheel,

30. A homogeneous sphere of radius « rolls without slipping on a fixed horizontal plane.
As in /17/, we define the position of the sphere by the coordinates ¢, 7, §{ of its center of
mass and by Euler's angles 0,¢,¥, and take them as Poincaré-—Chetaev variables. The condi~
tion of rolling without slipping on the plane provides the equations of constraints
=28 —a(@sing — ¢ cosPsinf) =0
=1 +a® cosP+ @ singsinb) =0, ng=10, =0

Taking n; = 6',m,=¢", N3 =9¢" + @cos® as the parameters of real displacements, we cbtain the system
of displacement operators

[ 3 . [4 a
Xo =374 Xlz-a-é*-i-asm\p-a-é-—acosqrgﬁ-
a a
Xz,:qu—cose—a—‘p-—acosq;sme ag — asinPsin @ 5~ 6n y Xg= a‘?p

of which only X, satisfies condition (1.5), since

(X, Xl) =2 0, (X, X3) == 0, (X,, Xg) =0

(X1, Xj) = sin 8X3 — a cos 0 cos PpX, — a cos B sin PX
{Xg, X3} = — asinysin 60X, + a cos P sin 86X

(X3, Xy = acos $X; | asin $X;

where X, = 8/8k, X, = d/dy are operators that correspond to the left-hand side of the equations of
nonholonomic constraints o,=0, 1, =
Moreover,
= Y:{(4 4 ma®) (0 + 0% H Ang?l, U=0
T = Ygm[ny? 4 n® -+ 62 -+ 2(e sin Pn; — a cos P sin 8) Mg -+ 2 (— a cos Py — @ sin P sin Oyy) 1 + ...
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Hence X; satisfies also condition (1.6). From this we have the ignorable integral
9T/dng == Ang = f == const
To derive Routh's equations we introduce the function
R =T+ U—Png = Yy {4+ ma®) (n + %) — 4]
which after substitution into (3.8) yields

A 2
(A4 ma?yny + ma®sinBeos iyt 4 ~i;—1 Bsin®y, =0
A 2
{A 4 ma®) m,’ — ma?sin 8 cos Bnym, — -*i;;"i Bsindny, =0
These equations together with
0 =y, @ = e 9 €05 6 o A
£ = a{n sinY — 1, cos Psin 6)
N = —a () cos Pt nysing sin B), T 0

derived from (3.9) constitute a closed system for the determination of the unknown gquantities
8,¢,% 51 §{mn as functions of time «

The author thanks V.V. Rumiantsev for valuable advice and remarks.
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