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ON THE THEORY OF IGNORAElLE DISPLACEMENTS FOR 
GENERALIZED POINCARi-CHETAEV EQUATIONS* 

FAM GURN 

Ignorable displacements for generalized Poinca&- Chetaev equations /5/ valid for 
holonomic and nonholonomic systems are defined , and a similar definition is given 
for the equations of motion of nonholonomic systems in PoincaA-Chetaev variables 

1%'. It is shown that this definition comprises, as particular cases, the definit- 
ions in /1,3,4/, as well as some other definitions of ignorable coordinates in /7- 
9/ and others. Routh equations of reduced order are presented. 

The general theory of ignorable displacements, first introduced in analytic mechanics by 
Chetaev /l/, was developed for holonomic and nonholonomic systems, respectively, in /2/ and 

/3,4/. 

1. Ignorable displacements and the integral for generalized Poinca&- 
Chetaev equations. Consider a mechanical system of N material points, defined at every 
instant of time t by variables x1, q, . . . . x,, which on real displacements are subjected to 
n- 1 linear equations of constraints 

n$E t$lajiX~$Bj-O (j=Z+t,...,n) (1.1) 

and on possible displacements to n-E relations 

OjE f: @ji&=O (i=1+1,..*,FZ) 
i-1 

(1.2) 

where 1 is the number of the system degrees of freedom and afi,al are known functions of 
variables t and 51. Nonhomonomic constraints are possible among those considered here. When 
they are present we assume the last k - 1 constraints to be holonomic (16 k< n). 

AS shown in /5/, it is then possible to construct a system of displacement operators X0, 
Xl,. . ., Xl that satisfy the relations 

(X8, Xa) - @il CsaltXl3 + _z+l GavXv 

(6=rO,1,... :1; a=% )..., 1) 

and obtain the equations of motion in the form of generalized Poincar&Chetaev equations 
valid for both, the holonomic (when k = 1 ) and nonholonomic systems (when k>E) 

(1.3) 

(1.41 

where T is the system kinetic energy (with allowance for imposed constraints), T” is the 
kinetic energy of the respective "holonomic system" without allowance for nonholonomic con- 
straints, U is the force function, and /&a and C,, 
t, xi, X2+1, . . - , 

are generally functions of variables 
Xk which are operators that correspond to the form of the left-hand sides of 

nonholonomic constraint equations (1.1). 
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To obtain some first integrals of Eqs.fl.4) we use the following definition. 

Definition 1. We call ignorable any displacement with operator X, that satisfies for 
~qs.(l,4) the following conditions 

lo. Commutators (1.3) for Xv axe of the form 

(X,, X,)= 2; c,,,x, (s==O,I,. .,I) (L-5) 
v:.-1 +1 

i.e. they can only be expressed in terms of operators that correspond to right-hand sides of 
the nonholonomic constraint equations (1.1). 

2O. 

holds for 

The equality 

(1.6) 

the kinetic energy and the force function. 
from the y-th of Eqs.fl.4) we can obtain the cyclic (ignorable) integral 

aTiBqv = &, .-z const (1.7) 

Definition 1 includes, as particular cases, Chetaev's definition of ignorable displace- 
ment for holonomic systems, since for them all coefficients C,,, are zero, and from (l-5), 
(1.6) we have Chetaev's conditions and the definition given in /4/ for the same Eqs.(l.4), 
since when operator Xv is communtative with all operators X,, conditions (1.51, (1.6) are 
the same as those in /4/. 

2. Ignorable displacements for equations of motion of nonholonomic systems 
in Poincar&-Chetaev variables. As in the case of equations of motion of nonholonomic 
systems in Poincar&Chetaev's variables /6/ 

it is possible to formulate the following definition. 

Definition 2. Operator Y, is an operator of ignorable displacement for Eqs.(Z.l), 
when the followings conditions are satisfied: 

(Y.,Y+$&k,.X, (s=O,i ,..., E) 

y, CT + U) + c (kiw + f: qrcq (G) = 0 
v=1+1 s=1 

f2.21 

where YO are operators of real displacements of nonhomonomic systems with constraints 

(2.3) 

For the respective holonomic system these operators are expressed in terms of displace- 
ments operators Xa in the fol;m 

k,ap = Cm + i: 
v=1+1 
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where the coefficients i&p are taken from the cummutators 

(X,,Xa)=jlC,apxi3 (s=O,1,..., k; a==1 ,...) k) 

T" is the kinetic energy of the respective holonomic system , and T its expression with (2.3) 
taken into account, i.e. it is the kinetic energy of the nonholonomic system. 

To each ignorable displacement corresponds in conformity with definition 2 the iCJnOrabb2 
integral 

aiV3nv = /3? = con& (2.5) 

Definition 2 comprises, as a particular case, the definition given in /3/ for the equa- 
tions of motion of nonholonomic systems in Poincard-Chetaev variables with constraint multi- 
pliers, according to which X, is an ignorable displacement when 

(X,, X,) = 0, (s = 0, 1,. . ., k), X, (Lo) = 0 (2.6) 

cW = 0 (Y = 1 + 1,. . ., k) 

where Xa are displacement operators of the respective holonomic system, cva are coefficients 
in the nonholonomic constraint equations (2.3), ma Lois the Lagrange function for the cor- 
responding holonomic system. 

Indeed, the substitution of (2.6) into (2.4) yields 

k 

Y a=Xa+ 3 c$.,xv, Y,=X, (a=O,1,...,2; a#y) 
Vd i-1 

The last two formulas show that the conditions are satisfied, since k&=-X, (c,& k&,,, = 
- Xv bog. Hence when condition (2.6) is satisfied, X, is also an ignorable displacement of 
Eqs.(2.1) (transformed to independent parameters) , while existence of the ignorable integral 
8T"ldn, = const for equations with multipliers implies the existence of an ignorable integral 
for the transformed equations (2.1). The latter can be obtained directly, since 

(2.7) 

Using definition (2.2) it is also possible to prove the following. 
a) The definition of ignorable coordinate in f7/ which yields the first integral for 

equations with multipliers does not, generally, provide the integral for the transformed equa- 
tions (2.1). To obtain the latter it is necessary and sufficient that the respective second 
condition (2.2) is satisfied. 

b) The definition of ignorable coordinate in /a/ reduces to the particular case of def- 
inition (2.21, it yields first integrals simultaneously for equations with multipliers and 
for the transformed equations (2.1). 

Indeed, let the nonholonomic system in generalized coordinates be subjected to nonholo- 
nomic constraints 

1 

%I = x cvoc’ (Y=l+l,,..,n) 
C4=1 

and the equations with multipliers be 

d 8IT aLo n -y_-_ 
dr &a apa c W&= 0 

0+-l 
d a.ce ato 
Tap,'-ap,+h=O (a=~,...,2:v=1+1,.... 74) 

(2.9) 

Then the ignorable coordinate that satisfies conditions /7/ 
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yields the first integral &Pl~q,‘=const. But formula (2.7) shows that without the assumption 
that cW ~0, the integral 8T/8qy'=wnst for the trarsformed equations , which in this case are 
Voronets' equations, does not always follow from (2.10). 

By virtue of (2.10) it is generally possible to obtain from (2.7) 

or 

where from (2.3) 

moreover 

kbf,, z 0, k& = Y,(c,y)-Yy(c,,) (s=1,...,I;Y=z$l,..., n) 

which by virtue of the first of conditions (2.10) yields 

Substituting (2.11) and (2.12) into the second of conditions (2.X0), we obtain 

(2.11) 

(2.12) 

(2.13) 

Formula (2.13) proves the second part of statement a). 
If the ignorable coordinate qy satisfies for Eqs.(2.9) the conditions /8/ 

aLolapv=o, cvv=o (~=~+t,...,nf 

then it satisfies conditions (2.10) , and it follows from (2.7) that aTiag,,'=const istheintegral 
of transformed equations (2.1), and from (2.3) and (2.13) that conditions (2.2) are also sat- 

isfied. Statement b) is proved. 
Another definition was given in /g-11/, namely that ’ q,? 1s an ignorable coordinate, 

al,” o %a -=0 (a=l,..., 2; v=Z+l,..., n) a’lp=y dq,, 

As shown in /12/, this definition does not provide the first integral of equations with 
multipliers. Neither can it yield an integral fox the transformed equations (2.11, i.e. for 
Voronets equations, since the corresponding equation for qu is then of the form 

which shows that it is possible to obtain the integral aTi13@ = const only when one more con- 

dition that follows from (2.21, according to which the right-hand side of (2.14) must vanish, 

is satisfied. 
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The definition of an ignorable coordinate given in /13/ for Voronets' equations isinthe 
form of conditions 

~~l~q~ = 0, CVQ = 0 
&&q, = 0 (s = 1, . . *, E; Y = I? + 1, . . ., n) 

It can be shown that these conditions reduce to conditions (2.2). 
Thus definition 2 comprises, as particular cases, definitions given in /3,8,13/, while 

for the definitions of such coordinates in /7,9,11/ to yield the first integral for the trans- 
formed equations (2.1) (which in this case are the Voronets' equations) it is necessary to 

satisfy some additional conditions derived from (2.2). 

3. The Routh equations, Let us show that having 1 -m ignorable integrals (1.7) 

8T/drh, = &, = const (y = m + 1,. . ., 1) (3.1) 

it is possible to reduce the order of the system of Eqs.(l.4). Indeed, since T is a positive 

definite quadratic function of parameters ?h,..., Q, it is possible to solve (3.1) for, letus 
say, the last 1 -m parameters 

'Iv = ny (f, 21, . * *, %x9 ‘11, . - *I rlmnr Bm+1r * * *I Bd (3.2) 

(y = m + 1, . . ., I) 

Introducing, now, the Rout% function of the form /l/ 

by virtue of (3.1) we have 

(3.3) 

(3.4) 

On the other hand, by substituting (3.2) into (3.3) we obtain function R dependent on $;Q;Q, 
* L *, rtm; !&+I, - . ., f3r, and 

(3.5) 

It follows from (3.4) and (3.5) that 

aTlaw = aR/atb, xa(l: + v) = x,(R) 
qp = - awafiv, x, (T + v) = X, (R) (CL = 1, * . ., m; 
y = m -I- 1, . . ., 1) 

(3.6) 

By virtue of (3.6) the first mgeneralized Poincarg- Chetaev equations (1.4) assume the form 

whichare tbeRouth equations of order 2m(m( 1) which together with the kinetic equations 

(3.7) 

(3.8) 

constitute a closed system of n-+-m differential equations for the determination of n-t-m 
variables xi and na as functions of time f. After this it is possible to determine nv us- 
ing Eqs.(3.6). 

In the case of holonomic systems Eqs.f3.7) coincide with the Routh equations for the 
Poincaxe' equations /l/, and when the operators of ignorable variables X, are commutativewith 
all other operators, they assume the form given in /4/. 

Similary, when Eqs.fZ.1) have 1 -m ignorable integrals (3.1) i the corresponding Routh 
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equations of the reduced system are 

where the Routh function is defined by the relation (3.3). 

4. Examples. lo. A mechanical system consists of a table rotating about its vertical 
axis with moment of inertia J on which moves a Chaplygin sledge /14/. We define the system 
position by the following variables: the table angle of rotation *,. rectangular coordinates 
g,q of the sledge (cutter) of its contact point A with the table, and the sledge angle of 
turn 'p about point A. Between these variables there is a single nonholonomic constraint 

qd = E’ sin v - 7j' cosrf~ = 0 (4.1) 

Taking these variables as the Poincar&-Chetaev variables and the quantities 

%= 9.2 q, = E‘cos 'p + q'sin v, qa ~1)‘ (4.2) 

as the parameters of real displacements, we obtain the following system of nonholonomic dis- 
placement operators: 

The commutators of these operators are zero, except the following one: 

(X,, X,) = -X*; X, = sin Q!@ - 03s $ildq 

where X, is the operator which corresponds to the left-hand side of the nonholonomic con- 
straint equation (4.1). These operators satisfy the first of conditions (2.2). In addition 
we have 

where m is the mass of the sledge with a,b its center of mass in the system of coordinates 
Axy rigidly attached to it (axis AX directed along the /sledge/ blade, and the Ay axis is 

normal to it) and the ellipsis denotes terms that axe independent of rl4. It will be seen 
that only X3 satisfies the second of conditions (2.2). The integral 

dZ'/'& = m(A1nl - A,na+ A& = @ = ccnst (4.4) 

that corresponds to this ignorable displacement, is the integral of the system moment of mom- 
entum about the vertical axis of rotation which can be directly obtained using the general 

theorem of dynamics. 
For the derivation of Routh's equations we have from (4.4) the expression for ~3, and 

obtain the Routh function R- T_tU---?j,. These equations are of the form 

which with equations 

constitute a closed system fox the determination of 9,E,q7%,qaas functions of t. After this 
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we can determine 0 using Bqs.(4.4), in which V = tls. 

2'. A small wheel with a sharp rim, part of some instrument which pushes it on a hori- 
zontal plane, while continuously holding the wheel rim in a vertical plane. The wheel rolls 
without friction on the horizontal plane with the wheel center of mass on the vertical axis 
passing through the contact point /15,16/. 

We define the position of this system by the horizontal coordinates 6,q of the wheel 

center of mass (of the contact point) G, by the angle up between the projection ofthewheel 
plane on the horizontal plane and the axis Ol& and by the angle of turn cpof the wheel about 
its axis GIGa' Between them there are nonholonomic constraints which stipulate thatthewheel 
rolls without friction and that the velocity of its center of mass remains all the time in 
its plane: 

q,m $Z -Rtp'sincp= 0, nrsz n' -Re'wsr/r I 0 (4.6) 

We assume f,n,rp,$ to be Poincarg- Chetaev variables, and nr= q',na=qto be the real 
displacement parameters. The respective displacement operators are then 

a a 
X,=x, X,=acp+Rsinlp ae a+R,os$-& 

These operators satisfy condition (1.5), since 

(X0, X,) = 0, (XO, X,) = 0, (XI, X,) = -R cosgx, + RsinqX~ 

where xs= al@,, X,=&n are operators which correspond to the left-hand of Bqs.(4.6) of non- 
holonomic constraints. We have, moreover, 

where kl*k2 are the radii of inertia of the wheel about its diameter and its axis of rotation, 
/respectively/, and the ellipsis denotes terms free of n8, n,. Hence condition (1.6) is sat- 
isfied for X, and X,, and the respective ignorable integrals are 

aT,‘aql = m (IP + kl*) q1 = p1 = comt, aT/atj$ = r&q* = 8, = const 

These integrals imply that parameters nl.nn remains always constant 7k= ~/[~(~~+~~~)I,~~= w(m&A). 
Their substitution into Eqs.(3.9) 

cp' = ql,q = na, E' = R sinIpnllr I)' = R cosm, 

followed by integration, yields the sought laws of motion of the wheel. 

3O. A homogeneous sphere of radius a rolls without slipping on a fixed horizontal plane. 
As in /17/, we define the position of the sphere by the coordinates E,?, g of its center of 
mass and by Euler's angles B, 'p, Ip t and take them as Poincarg-Chetaev variables. The condi- 
tion of rolling without slipping on the plane provides the equations of constraints 

Taking nl= O',~n.=cp',qs==$'+(pcosO as the parameters of real displacements,weobtaintbesystem 
of displacement operators 

x&p 4=ygy a+ a a 
osini#x-acosrl,ag 

a X,=a-cosea-~cos~sin~---_ain~sin~a a 
% a* at a4 9 &=ag 

of which only X8 satisfies condition tl.5), since 

(X0. Xl) = 0, (X0, X2) = 0, (X0, X,) = 0 
(Xl, X,) = sin ex, - a cos e cos qx, - a ~0~ i3 sin *x8 
(X2, X.4 = - a sin * sin ex, -i- a co5 0 sin 8X, 
(XS, S,) = a cm $X4 + a sin *lx, 

where X,= alag, X,= aiaq are operators that correspond to the left-hand side of the equations of 
nonholonomic constraints q,= 0, r), = 0. 
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Hence X, satisfies also condition (1.6). From this we have the ignorable integral 
ar,@?h =- AQ = fl -.: const 

To derive Routh's equations we introduce the function 

R:- ji'-+ U-_?h l/s ((A ~,- mz~) (+h2 + q*2) - pin 1 
which after substitution into (3.8) yields 

derived from (3.9) constitute a closed system for the determination of the unknown quantities 

8,(9,% 5, rl, 5, 'Il. '19 as functions of time t. 
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